On $V$-harmonic forms in compact locally conformal Kähler manifolds with the parallel Lee form
نویسندگان
چکیده
منابع مشابه
Locally conformal Kähler manifolds with potential
A locally conformally Kähler (LCK) manifold M is one which is covered by a Kähler manifold M̃ with the deck transform group acting conformally on M̃ . If M admits a holomorphic flow, acting on M̃ conformally, it is called a Vaisman manifold. Neither the class of LCK manifolds nor that of Vaisman manifolds is stable under small deformations. We define a new class of LCK-manifolds, called LCK manifo...
متن کاملLocally conformally Kähler manifolds with potential
A locally conformally Kähler (LCK) manifold M is one which is covered by a Kähler manifold M̃ with the deck transform group acting conformally on M̃ . If M admits a holomorphic flow, acting on M̃ conformally, it is called a Vaisman manifold. Neither the class of LCK manifolds nor that of Vaisman manifolds is stable under small deformations. We define a new class of LCK-manifolds, called LCK manifo...
متن کاملHarmonic forms on manifolds with edges
Let (X, g) be a compact Riemannian stratified space with simple edge singularity. Thus a neighbourhood of the singular stratum is a bundle of truncated cones over a lower dimensional compact smooth manifold. We calculate the various polynomially weighted de Rham cohomology spaces of X , as well as the associated spaces of harmonic forms. In the unweighted case, this is closely related to recent...
متن کاملTopology of locally conformally Kähler manifolds with potential
Locally conformally Kähler (LCK) manifolds with potential are those which admit a Kähler covering with a proper, automorphic, global potential. Existence of a potential can be characterized cohomologically as vanishing of a certain cohomology class, called the Bott-Chern class. Compact LCK manifolds with potential are stable at small deformations and admit holomorphic embeddings into Hopf manif...
متن کاملOn Locally Conformal Kahler Space Forms
An m-dimensional locally conformal Khler manifold (l.c.K-manifold) is characterized as a Hermitian manifold admitting a global closed 1-form a%(called the Lee form) whose structure (F%,g%) satisfies VF -8g + 8g F + aF, where ? denotes the covariant differentiation with respect to the Hermitian metric gl, 8 -Fl a, Fl F gel and the indices 9, ,l run over the range 1,2, m. For l.c.K-manifolds, I.V...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 1980
ISSN: 0386-5991
DOI: 10.2996/kmj/1138036121